35 research outputs found

    Kawasaki Disease Patient Stratification and Pathway Analysis Based on Host Transcriptomic and Proteomic Profiles

    Get PDF
    The aetiology of Kawasaki disease (KD), an acute inflammatory disorder of childhood, remains unknown despite various triggers of KD having been proposed. Host ‘omic profiles offer insights into the host response to infection and inflammation, with the interrogation of multiple ‘omic levels in parallel providing a more comprehensive picture. We used differential abundance analysis, pathway analysis, clustering, and classification techniques to explore whether the host response in KD is more similar to the response to bacterial or viral infections at the transcriptomic and proteomic levels through comparison of ‘omic profiles from children with KD to those with bacterial and viral infections. Pathways activated in patients with KD included those involved in anti-viral and anti-bacterial responses. Unsupervised clustering showed that the majority of KD patients clustered with bacterial patients on both ‘omic levels, whilst application of diagnostic signatures specific for bacterial and viral infections revealed that many transcriptomic KD samples had low probabilities of having bacterial or viral infections, suggesting that KD may be triggered by a different process not typical of either common bacterial or viral infections. Clustering based on the transcriptomic and proteomic responses during KD revealed three clusters of KD patients on both ‘omic levels, suggesting heterogeneity within the inflammatory response during KD. The observed heterogeneity may reflect differences in the host response to a common trigger, or variation dependent on different triggers of the condition

    Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature

    Full text link
    Background: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. Methods: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a ‘‘cost’’ weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identifiedwas further validated in a new RNA sequencing dataset comprising 411 febrile children. Findings: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort andbenchmarked against existingdichotomousRNA signatures. Conclusions: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. Funding: European Union’s Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC

    Raising AWaRe-ness of Antimicrobial Stewardship Challenges in Pediatric Emergency Care: Results from the PERFORM Study Assessing Consistency and Appropriateness of Antibiotic Prescribing Across Europe

    Full text link
    Background Optimization of antimicrobial stewardship is key to tackling antimicrobial resistance, which is exacerbated by overprescription of antibiotics in pediatric emergency departments (EDs). We described patterns of empiric antibiotic use in European EDs and characterized appropriateness and consistency of prescribing. Methods Between August 2016 and December 2019, febrile children attending EDs in 9 European countries with suspected infection were recruited into the PERFORM (Personalised Risk Assessment in Febrile Illness to Optimise Real-Life Management) study. Empiric systemic antibiotic use was determined in view of assigned final “bacterial” or “viral” phenotype. Antibiotics were classified according to the World Health Organization (WHO) AWaRe classification. Results Of 2130 febrile episodes (excluding children with nonbacterial/nonviral phenotypes), 1549 (72.7%) were assigned a bacterial and 581 (27.3%) a viral phenotype. A total of 1318 of 1549 episodes (85.1%) with a bacterial and 269 of 581 (46.3%) with a viral phenotype received empiric systemic antibiotics (in the first 2 days of admission). Of those, the majority (87.8% in the bacterial and 87.0% in the viral group) received parenteral antibiotics. The top 3 antibiotics prescribed were third-generation cephalosporins, penicillins, and penicillin/β-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the viral group, 216 of 269 (80.3%) received ≥1 antibiotic in the “Watch” category. Conclusions Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial overprescription of antibiotics. A significant proportion of patients with a viral phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology could significantly improve antimicrobial stewardship

    Biomarkers for the Discrimination of Acute Kawasaki Disease From Infections in Childhood

    Get PDF
    Funding Information: We would like to thank all the patients and their relatives as well as the treatment teams for their participation in this study. We also thank Dr. Mischa Keizer for his help in developing the MRP8/14 ELISA. We would like to thank the EUCLIDS Consortium, PERFORM Consortium, and the Genetic Determinants of Kawasaki Disease Study group (UK). Funding. This work was partially supported by the European Seventh Framework Program for Research and Technological Development (FP7) under EUCLIDS grant agreement no. 279185; from the European Union's Horizon 2020 research and innovation program under grant agreement no. 668303; by STINAFO and anonymous donor; and by Sanquin Blood Supply Product and Process Development Cellular Products Fund (PPOC 1957). Publisher Copyright: © Copyright © 2020 Zandstra, van de Geer, Tanck, van Stijn-Bringas Dimitriades, Aarts, Dietz, van Bruggen, Schweintzger, Zenz, Emonts, Zavadska, Pokorn, Usuf, Moll, Schlapbach, Carrol, Paulus, Tsolia, Fink, Yeung, Shimizu, Tremoulet, Galassini, Wright, Martinón-Torres, Herberg, Burns, Levin, Kuijpers, EUCLIDS Consortium, PERFORM Consortium and UK Kawasaki Disease Genetics Study Network. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Kawasaki disease (KD) is a vasculitis of early childhood mimicking several infectious diseases. Differentiation between KD and infectious diseases is essential as KD's most important complication—the development of coronary artery aneurysms (CAA)—can be largely avoided by timely treatment with intravenous immunoglobulins (IVIG). Currently, KD diagnosis is only based on clinical criteria. The aim of this study was to evaluate whether routine C-reactive protein (CRP) and additional inflammatory parameters myeloid-related protein 8/14 (MRP8/14 or S100A8/9) and human neutrophil-derived elastase (HNE) could distinguish KD from infectious diseases. Methods and Results: The cross-sectional study included KD patients and children with proven infections as well as febrile controls. Patients were recruited between July 2006 and December 2018 in Europe and USA. MRP8/14, CRP, and HNE were assessed for their discriminatory ability by multiple logistic regression analysis with backward selection and receiver operator characteristic (ROC) curves. In the discovery cohort, the combination of MRP8/14+CRP discriminated KD patients (n = 48) from patients with infection (n = 105), with area under the ROC curve (AUC) of 0.88. The HNE values did not improve discrimination. The first validation cohort confirmed the predictive value of MRP8/14+CRP to discriminate acute KD patients (n = 26) from those with infections (n = 150), with an AUC of 0.78. The second validation cohort of acute KD patients (n = 25) and febrile controls (n = 50) showed an AUC of 0.72, which improved to 0.84 when HNE was included. Conclusion: When used in combination, the plasma markers MRP8/14, CRP, and HNE may assist in the discrimination of KD from both proven and suspected infection.publishersversionPeer reviewe

    Raising AWaRe-ness of antimicrobial stewardship challenges in pediatric emergency care: results from the PERFORM study assessing consistency and appropriateness of antibiotic prescribing across Europe.

    Get PDF
    OBJECTIVES Optimization of antimicrobial stewardship (AMS) is key to tackling antimicrobial resistance (AMR), which is exacerbated by over-prescription of antibiotics in pediatric Emergency Departments (EDs). We described patterns of empiric antibiotic use in European EDs, and characterized appropriateness and consistency of prescribing. METHODS Between August 2016 and December 2019 febrile children attending the ED in nine European countries with suspected infection were recruited into the PERFORM (Personalised Risk assessment in Febrile illness to Optimise Real-life Management) study. Empiric systemic antibiotic use was determined in view of assigned final 'bacterial' or 'viral' phenotype. Antibiotics were classified according to WHO AWaRe. RESULTS Of 2130 febrile episodes (excluding children with non-bacterial/non-viral phenotypes), 1549 (72.7%) were assigned a 'bacterial' and 581 (27.3%) a 'viral' phenotype. A total of 1318/1549 (85.1%) episodes with a 'bacterial' and 269/581 (46.3%) with a 'viral' phenotype received empiric systemic antibiotics (first two days of admission). Of those, the majority (87.8% in 'bacterial' and 87.0% in 'viral' group) received parenteral antibiotics. The top three antibiotics prescribed were third-generation cephalosporins, penicillins and penicillin/beta-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the 'viral' group 216/269 (80.3%) received ≥ one Watch antibiotic. CONCLUSIONS Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial over-prescription of antibiotics. A significant proportion of patients with a 'viral' phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology, could significantly improve AMS

    Febrile illness in high-risk children: a prospective, international observational study.

    Get PDF
    To assess and describe the aetiology and management of febrile illness in children with primary or acquired immunodeficiency at high risk of serious bacterial infection, as seen in emergency departments in tertiary hospitals. Prospective data on demographics, presenting features, investigations, microbiology, management, and outcome of patients within the 'Biomarker Validation in HR patients' database in PERFORM, were analysed. Immunocompromised children (< 18 years old) presented to fifteen European hospitals in nine countries, and one Gambian hospital, with fever or suspected infection and clinical indication for blood investigations. Febrile episodes were assigned clinical phenotypes using the validated PERFORM algorithm. Logistic regression was used to assess the effect size of predictive features of proven/presumed bacterial or viral infection. A total of 599 episodes in 482 children were analysed. Seventy-eight episodes (13.0%) were definite bacterial, 67 episodes probable bacterial (11.2%), and 29 bacterial syndrome (4.8%). Fifty-five were definite viral (9.2%), 49 probable viral (8.2%), and 23 viral syndrome (3.8%). One hundred ninety were unknown bacterial or viral infections (31.7%), and 108 had inflammatory or other non-infectious causes of fever (18.1%). Predictive features of proven/presumed bacterial infection were ill appearance (OR 3.1 (95% CI 2.1-4.6)) and HIV (OR 10.4 (95% CI 2.0-54.4)). Ill appearance reduced the odds of having a proven/presumed viral infection (OR 0.5 (95% CI 0.3-0.9)). A total of 82.1% had new empirical antibiotics started on admission (N = 492); 94.3% proven/presumed bacterial (N = 164), 66.1% proven/presumed viral (N = 84), and 93.2% unknown bacterial or viral infections (N = 177). Mortality was 1.9% (N = 11) and 87.1% made full recovery (N = 522).   Conclusion: The aetiology of febrile illness in immunocompromised children is diverse. In one-third of cases, no cause for the fever will be identified. Justification for standard intravenous antibiotic treatment for every febrile immunocompromised child is debatable, yet effective. Better clinical decision-making tools and new biomarkers are needed for this population. What is Known: • Immunosuppressed children are at high risk for morbidity and mortality of serious bacterial and viral infection, but often present with fever as only clinical symptom. • Current diagnostic measures in this group are not specific to rule out bacterial infection, and positivity rates of microbiological cultures are low. What is New: • Febrile illness and infectious complications remain a significant cause of mortality and morbidity in HR children, yet management is effective. • The aetiology of febrile illness in immunocompromised children is diverse, and development of pathways for early discharge or cessation of intravenous antibiotics is debatable, and requires better clinical decision-making tools and biomarkers

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe:a multicentre, prospective observational study

    Get PDF
    Background: The PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice. Methods: Febrile children and controls were recruited on presentation to hospital in 9 European countries 2016–2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed. Findings: Of 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92–5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07–7.59), Group A streptococcus (OR 2.73, 95% CI 1.13–6.09) and E. coli (OR 2.7, 95% CI 1.02–6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11–0.46), influenza B (OR 0.12, 95% CI 0.02–0.37) and RSV (OR 0.16, 95% CI: 0.06–0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23–0.72) and EBV (OR 0.71, 95% CI 0.56–0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively. Interpretation: Most febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics. Funding: EU Horizon 2020 grant 668303.</p

    Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease

    Get PDF
    Kawasaki disease (KD) is a paediatric vasculitis associated with coronary artery aneurysms (CAA). Genetic variants influencing susceptibility to KD have been previously identified, but no risk alleles have been validated that influence CAA formation. We conducted a genome-wide association study (GWAS) for CAA in KD patients of European descent with 200 cases and 276 controls. A second GWAS for susceptibility pooled KD cases with healthy paediatric controls from vaccine trials in the UK (n = 1609). Logistic regression mixed models were used for both GWASs. The susceptibility GWAS was meta-analysed with 400 KD cases and 6101 controls from a previous European GWAS, these results were further meta-analysed with Japanese GWASs at two putative loci. The CAA GWAS identified an intergenic region of chromosome 20q13 with multiple SNVs showing genome-wide significance. The risk allele of the most associated SNV (rs6017006) was present in 13% of cases and 4% of controls; in East Asian 1000 Genomes data, the allele was absent or rare. Susceptibility GWAS with meta-analysis with previously published European data identified two previously associated loci (ITPKC and FCGR2A). Further meta-analysis with Japanese GWAS summary data from the CASP3 and FAM167A genomic regions validated these loci in Europeans showing consistent effects of the top SNVs in both populations. We identified a novel locus for CAA in KD patients of European descent. The results suggest that different genes determine susceptibility to KD and development of CAA and future work should focus on the function of the intergenic region on chromosome 20q13
    corecore